Ken Saito

Ken Saito

Introduction

Research Interests

    I am interested in Algebraic Combinatorics, Coding Theory, Error-Correcting Codes, Self-Dual Codes, Combinatorial Design Theory and so on.

Algebraic Coding Theory

    Claude Shannon's paper "A Mathematical Theory of Communication" [1], written in 1948, started the discipline in electrical engineering called information theory, and also the branch of it called error-correcting codes.
    It is unknown whether a binary doubly-even [72,36,16] code exists or not.   This is one of the long-standing open problems suggested by Sloane [2] in 1973.

References
  1. C. E. Shannon, A mathematical theory of communication, Bell System Tech. J. 27, (1948), 379-423, 623-656.
  2. N. J. A. Sloane, Is there a (72,36) d=16 self-dual code?, IEEE Trans. Information Theory IT-19, (1973), no. 2, 251.

Curriculum Vitae

Personal

  • Birth: May 3, 1991 at Tsuruoka (Yamagata pref.), Japan

Position

  • April, 2016 - Present: Graduate School of Information Sciences, Tohoku University

Education

  • Master: Graduate School of Information Sciences, Tohoku University, March, 2016 (adviser: Masaaki Harada)
  • Bachelor: Department of Mathematical Sciences, Faculty of Science, Yamagata University, March, 2014

Research

Publications (Submitted)

  1. Singly even self-dual codes constructed from Hadamard matrices of order 28 (with Masaaki Harada), submitted to Australasian Journal of Combinatorics (2017.8.22).
  2. Self-dual additive F4-codes of lengths up to 40 represented by circulant graphs, submitted to Advances in Mathematics of Communications (2017.1.21).

Publications (In Press)

  1. On the classification of Z4-codes (with Makoto Araya, Masaaki Harada and Hiroki Ito), Advances in Mathematics of Communications (2017.7.3).

Talks

  1. 単純グラフから構成される符号の分類、「日本数学会2017年度秋季総合分科会」、山形大学、2017年9月13日
  2. On additive F4-codes constructed from graphs、「第13回組合せ論若手研究集会」、慶應義塾大学(矢上キャンパス)、2017年3月1日
  3. Additive F4-codes constructed by circulant graphs、「研究集会「実験計画法と符号および関連する組合せ構造」」、秋保リゾートホテルクレセント、2016年11月29日
  4. 巡回行列から構成される4元体上の符号の分類、「離散数理セミナー」、山形大学(理学部・大学院理工学研究科)、2016年6月9日
  5. Circulant graph code の性質と分類、「ミニ集会「代数的組合せ論とその周辺」」、東北大学(情報科学研究科)、2016年3月8日

Master's Thesis

    位数4の有限体上の additive code について, 修士論文, 東北大学, 2016.


Links

Links

Databases

E-mail

    kensaito "at" ims.is.tohoku.ac.jp

Last Update: September 13, 2017